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Abstract. We propose that the normal-state transport in the cuprate superconductors can be
understood in terms of a two-fluid model of spinons and holons. In our scenario, the resistivity
is determined by holon dynamics while magnetotransport involves the recombination of holons
and spinons to form physical electrons. Our model implies that the Hall transport time, as
defined by Anderson and Ong, is a measure of the electron lifetime, which is shorter than the
longitudinal transport time. We predict a strong increase in linewidth with increasing temperature
in photoemission. Our model also suggests that the AC Hall effect is controlled by the transport
time.

1. Introduction

The normal state of the cuprate superconductor exhibits anomalous transport properties [1].
In this paper, we discuss the implications of the experimental results for theoretical ideas
based on spin–charge separation in this system. In our previous work [2], we have argued
that transport in an electric field may be described by a boson-only theory for the charge
degree of freedom. In this paper, we propose that transport in a magnetic field, such as the
Hall effect and magnetoresistance, is controlled by the degree of spin–charge recombination
in the system.

We review here the experimental results which provide severe constraints on possible
theories. We focus on the case of optimal doping where the superconducting transition
temperatureTc is highest. The in-plane resistivity is linear in temperatureT . The
relaxation rate, measured from a Drude-like peak in the optical conductivity, appears to
be universal [3–5]:

h̄/τtr ' 2kBT . (1)

The spectral weight under the Drude-like peak (or derived from the London penetration
depth) is proportional to the hole dopingx and can be written ase2x/ma2, wherea is
the lattice constant andm is found to be close to twice the free-electron mass. In a tight-
binding model, this mass corresponds to a hopping integral of 1540 K. This is close to the
antiferromagnetic exchangeJ but can also be interpreted ast/3. The latter interpretation
is consistent with recent studies of thet–J model [6]. The Hall coefficient, on the other
hand, is found to be suppressed from the classical valuea2/xec [7]. It rises as 1/T with
decreasingT , approaching the classical value only nearTc. The magnetoresistance [8] is
also strongly suppressed from the expectation that1ρ/ρ scales asτ 2

tr .
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There has been remarkable success in analysing the transport data [1, 7, 8] by introducing
a new Hall timescaleτH, as suggested by Anderson [9]. In this picture, the Hall angle
θH = σxy/σxx and1ρ/ρ are given by

tanθH = ωcτH and 1ρ/ρ ' (ωcτH)
2 (2)

with

h̄/τH ' T 2/WH (3)

whereωc = eB/mc is the cyclotron frequency andWH is a temperature scale discussed
below. In the presence of non-magnetic Zn impurities [10], 1/τH extrapolates to a finite
value at zero temperature but itsT -dependence is unaffected. This residual value is
proportional to the impurity concentration and is comparable to its longitudinal counterpart.
This suggests that 1/τH is more than a fitting parameter and represents a physical process.

Consider now the temperature scaleWH. For 90 K YBCO, θ2
H = DB2/T 4 where

D = 1630 K4 T−2 [8]. From (2), we see that the Hall angle measuresτH/m. Using the mass
extracted from the optical spectral weight, we obtainWH = (h̄/2ea2)(kBD

1/2/J ) ' 65 K
for 90 K YBCO. The Hall timeτH is thereforeshorter than the longitudinal timeτtr above
130 K, i.e. throughout the whole of the normal state except for the region close toTc. Under
the assumption of a single mass, the Hall coefficient is

RH ' a2

xec

τH

τtr
(4)

so its reduction from the classical value is direct evidence thatτH < τtr.
We note that this analysis is different from the original analysis of references [7, 9],

which assumes thatτH is controlled by the decay of a long-lived quasiparticle (WH ' J )
and so it is longer than the transport timeτtr. As recognized by these authors, this leads
one to deduce a carrier mass 20 times larger than the one used above.

Anderson has emphasized that the appearance ofτH may be a signature of spin–charge
separation. There have been attempts to derive (3) [11–14]. Most are based on the
Boltzmann transport of a single carrier with unusual scattering mechanisms. For example,
Colemanet al [13] introduce a mechanism which does not conserve particle number. Kotliar
et al [14] use a skew-scattering rate which diverges at low temperatures, andτH appears
not as a physical rate but as a ratio of two rates, so its behaviour with impurity is difficult
to rationalize. In this paper, we abandon the notion of a single carrier, and explore a
phenomenology based on spin–charge separation.

2. Spin–charge separation

We review first the picture of spin–charge separation in thet–J model which, we believe,
describes the low-energy physics of the cuprates. In the slave-boson treatment [15, 16], the
introduction of a physical hole (of spinσ at sitei) away from half-filling is represented as
the creation of a charged hard-core boson (holon) and the destruction of a neutral spin-half
fermion (spinon):

ciσ = b†i fiσ (5)

with a single-occupancy constraint:b†i bi +
∑

σ f
†
iσ fiσ = 1. For a doping ofx holes per

site, the holon and spinon densities arenb = x andnf = 1− x respectively. In the uniform
resonating-valence-bondansatz, short-range antiferromagnetic correlations are incorporated
into the model by assuming that

∑
σ 〈f †iσ fjσ 〉 = ξeiaij . At the mean-field level, there is no
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net gauge flux (aij = 0), so the holons have a bandwidth controlled by the hopping integral
t of the original electrons while the spinon bandwidth is controlled by the antiferromagnetic
exchangeJ . In this paper, we will focus on the cuprates near optimal doping where this
slave-boson scheme is believed to apply. For instance, it gives rise to a large Fermi surface,
as observed in photoemission experiments.

The fluctuations in the gauge fieldaij are strong. For temperatures above the
experimentalTc, the transverse part of the fluctuations corresponds to a magnetic field with a
root mean square value of the order of a flux quantum per plaquette [2]. These fluctuations
arise because the single-occupancy constraint requires that the spinon and holon number
currents cancel each other:

Jf + Jb = 0. (6)

At sufficiently low temperatures, the bosons become phase coherent, leading to well-
defined physical electron quasiparticles, i.e. spinon–holon confinement or the breakdown of
spin–charge separation. We believe that this confinement occurs atTc, consistently with the
fact that the electronic quasiparticles are long-lived in the superconducting state [17].

The fluctuations of the gauge field have a drastic effect on the transport properties of the
system. Longitudinal transport should be dominated by the dynamics of the charged holons.
The holons are strongly scattered by the gauge fields which can be regarded as quasistatic
disorder at long wavelengths and low temperatures. We have shown in a quantum Monte
Carlo study [2] of a holon-only model that this gives rise to a holon scattering rate equal
to 2kBT which should also be the scattering rate relevant to longitudinal transport. This is
consistent with the relaxation rate (1) deduced from the optical conductivity.

The picture that emerged from our previous study [2] is that, in the normal state, the
boson de Broglie wavelength is much larger than the interparticle spacing, so the bosons
undergo strong exchange and should be viewed as a quantum liquid rather than single
particles. The strong gauge field forces the boson world lines to retrace each other, and
prevents the development of a superfluid density. In other words, the bosons attempt to
avoid the frustrating effects of a random gauge field by retracing each other’s paths, and
hence they do not detect any random Aharonov–Bohm phase. Consequently, the holons are
also insensitive to weakexternalfields. Therefore the holon fluid itself has negligible Hall
effect and magnetoconductivity.

We next argue that the spinon fluid also gives a negligible contribution to the magnetic
response. This is because the external gauge field couples only to the holon fluid. Therefore,
the spinons will contribute to the magnetic response only if the holons develop an orbital
current which, via the constraint (6), drives a spinon orbital current. This means that the
spinon contribution to the Hall effect scales with the orbital susceptibilityχb of the holon
fluid. More quantitatively, in the random-phase approximation, the total Hall coefficient of
the spinon–holon fluid is given by the Ioffe–Larkin rule [15, 16]:

RH = χfRH,b + χbRH,f

χf + χb (7)

whereRH,b andχb are the holon Hall coefficient and orbital susceptibility andRH,f and
χf are the corresponding spinon quantities. The retracing-path scenario means that, as with
the boson Hall response, the boson orbital susceptibilityχb is suppressed by the gauge
fluctuations [2]. Therefore, we see that the spinon contribution to the total Hall response of
the system is also small.

We regard this small magnetic response of a system with complete spin–charge
separation as a good starting point because qualitatively the anomaly is asuppressionof the
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Hall effect and the magnetoresistance in the cuprates. We now need to find a mechanism
to restore some of the response to a magnetic field, especially as the temperature is reduced
towardsTc.

It is possible that the self-retracing approximation breaks down due to gauge-field
dynamics or a reduction in gauge amplitude, and hence that the response to a magnetic
field is gradually restored at low temperatures. In this paper, we explore another possibility.
We suggest that the retracing picture remains valid down toTc, and hence that the magnetic
response is beyond the scope of the model which we have been discussing so far, i.e. one
with complete spin–charge separation. Instead, we propose that the magnetic response could
be understood in terms of the incipient recombination of the holons and spinons to form
a physical hole. This is based on the observation that a physical hole does not experience
any fictitious gauge fields, and hence that its magnetic response should not be suppressed.
Even though the hole is made up of a spinon and a holon, the Aharonov–Bohm phases
of the holon and the spinon due to the internal gauge field now cancel each other, and
the physical hole is not forced to be self-retracing by the internal field. We believe that
this recombination increases with decreasing temperature, and that this process is complete
whenTc is reached. This is consistent with the observation that the Hall coefficient of the
cuprates approaches the classical value as one approachesTc.

3. Spin–charge recombination

We will now develop a simple phenomenology for normal-state transport based on the ideas
outlined in the previous section. We do not claim to have the final answer, because we are
forced to make a number of assumptions before we can arrive at (3). We can only give
some indication of how one might justify some of the assumptions in terms of the gauge
theory of thet–J model.

Figure 1. A schematic picture of recombination and decay involving spinons (solid line) and
holons (dashed line) and physical holes (box). A hole lives for a timeτhole, shorter than the
holon lifetimeτb and the spinon lifetimeτb/x. Only the physical hole experiences an external
magnetic field.

Our phenomenological picture is as follows. In the normal state the charge carrier exists
in two states—either as a holon or as a physical hole:

holon (b)+ antispinon(f)
 hole (h). (8)

The densities of the holonsnb, spinonsnf and physical holesnhole obey: nb + nhole = x
andnf + nb = 1 wherex is the doping per site. The carrier exists as a bosonic holon for
a time interval of the order ofτb before recombining with an antispinon to form a physical
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hole. This physical hole has a lifetime ofτhole before decaying back into its spin and charge
components. The evolution in space and time of a few holons, spinons and physical holes
is shown in figure 1. Detailed balance at equilibrium gives

nbnf

τb
= nhole

τhole
. (9)

In a regime of strong spin–charge separation, the electron lifetime is short (τhole� τb),
and hencenhole� nf , nb and

nhole' x τhole

τb
. (10)

As one approaches the confinement regime,τhole becomes larger thanτb andnhole' nb.
We will now discuss the implications of this scenario for transport properties. As

mentioned above, the charge carrier responds to external magnetic fields only as a physical
hole. In the simplest possible model for this picture, the drift velocityv of the system
under an in-plane electric fieldE and perpendicular magnetic fieldB obeys the following
dynamics:

mv̇ + mv
τtr
= eE + e

c
η(t)v ×B. (11)

We assume here a single relaxation time for momentum relaxation which is consistent with
experiments at frequencies below 2kBT/h̄. The random functionη(t) is zero except for
spikes of value unity and durationτhole. These spikes occur at time intervals of the order
of τb. Thus, the response of the charge carriers to an external magnetic field is switched on
for a duration ofτhole and switches off for a duration ofτb � τhole, corresponding to the
deconfined and confined states in (8) respectively.

At timescales greater thanτb, the system sees an effective magnetic fieldηB, where
the reduction factorη = τhole/τb is the time-averaged value ofη. This can be seen from
the classical dynamics of the system. An electric fieldE in the x-direction accelerates
a particle for a duration ofτtr before the particle velocity is randomized. Thus, the drift
velocity of the system isvx ∼ eEτtr/m, andσxx = ne2τtr/m wherem is the holon mass in
the spin–charge-separated regime. In this time interval, a particle also receives on average
τtr/τb impulses ofevxBτhole/c in the y-direction due to the Lorentz force. The transverse
drift momentum ismvy ∼ (evxB/c)(τtr/τb)τhole= eEωcτ 2

trτhole/τb. From this, we deduce a
Hall angle ofθH ' vy/vx = ωcτH where

τH ' τhole

τb
τtr. (12)

We therefore see that the Hall effect is reduced from the Fermi-liquid result (τH = τtr) by
the fraction

η = τhole

τb
' nhole

nb
. (13)

One can also see in this picture that thex-component of the Lorentz force gives rise to
a negative magnetoconductivity proportional to(ωcτH)

2.
It should be noted that the simple model (11) does not involve separate decay rates for

the longitudinal and transverse drift velocities, so the width 1/τ ac
H of the AC Hall angle

θH(ω) is given by the transport relaxation time 1/τtr rather than 1/τH:

θH(ω) = η(T )eB/mc

iω − τ−1
tr

. (14)
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In our view, the reduction of the magnetic field response is characterized by a reduction
of the average charge, rather than by a change in the lifetime. This will also imply a
reduction in the Hall sum rule, a point to which we shall return later.

In order not to spoil the description ofτtr as being due to gauge-field scattering [2], it is
important to show that the binding of a holon with an antispinon and the subsequent decay
of the physical hole do not provide an additional mechanism for dissipating momentum from
the holon–spinon system. Note that this requires only thetotal drift current to be conserved
during recombination and decay. At first sight this seems unlikely to happen. From the
view of the holon which carries a small momentum, it would appear that its momentum
is strongly affected in each decay and recombination process. However, from the view
of the spinon, which carries a large momentum of orderπ/a, it is reasonable that it is
scattered mainly in the forward direction and that its velocity is preserved. This is indicated
in figure 1. We can now appeal to the current constraint (6) to argue that,on average, the
boson current is also conserved. The constraint is relaxed locally in a spin–charge-separated
system, but must remain in force on larger length scales. Another way of saying this is that
the depiction of individual scattering events in figure 1 is misleading because the holons
are strongly overlapping and exchanging and should not be viewed as individually scattered
particles.

So far, our model indicates 1/τH to be a combination of three timescales. However, as
already pointed out, 1/τH changes with disorder as though it is a physical scattering rate.
This forces us to conjecture further that

τb ∼ τtr (15)

and hence that

τH ∼ τhole. (16)

In other words, the Hall transport time is a measure of the lifetime of the physical
hole. This provides another important test of our model. The hole lifetime can be
deduced independently from angle-resolved photoemission linewidths which we predict
from equations (3) and (16) to grow asT 2/WH. The small size ofWH leads to a severe
broadening at room temperature which should be amenable to experimental verification.

The assumption thatτb ∼ τtr is the weakest point of our argument. The only justification
that we can offer is that, due to the mismatch of the kinematics of the spinon and the holon,
the recombination process is perhaps controlled by the same momentum relaxation process
as contributes toτtr. We also need to argue that, in the presence of impurities, 1/τhole

becomes 1/τhole+ 1/τ0 where 1/τ0 is a residual value due to impurity scattering. This is
not unreasonable in that a hole may well disintegrate rapidly on encountering an impurity.
Finally, we can offer no explanation of whyτhole should scale as 1/T 2. More importantly,
we do not understand the origin ofWH which is small and not very sensitive to doping. It
is also puzzling that the spin gap in the underdoped cuprates has a much smaller effect on
τH than onτtr.

4. Conclusion

We conclude by discussing some experimental consequences of our model. We have already
pointed out that our picture predicts aT 2-broadening of photoemission linewidths. Our
model, in particular equation (14), also has implications for the AC Hall effect [17–19]. For
YBCO film on LaAlO3 [19], it was found at 100 K that the Hall dynamics is characterized
by (τ ac

H )
−1 ' 77 cm−1 while τ−1

tr ' 130 cm−1. Additional measurements at 28.2 and
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54.1 cm−1 were reported up to 140 K [19]. By fitting the data to a two-lifetime model,
which predicts ImθH = ωωcτ 2

H for ωτH � 1, τ−1
H was found to increase slightly faster than

T 2. We note that, from (14), we predict instead

Im θH = ωωcητ 2
tr ∼ ωωcτHτtr (17)

giving an effective rate of(τHτtr)
−1/2 ∼ T 3/2 instead ofT 2 in the analysis of [19]. We

believe that a wider temperature range is needed to distinguish between the two models.
Our model also implies aT -dependent violation of the Hall angle sum rule [19] in that∫

ReθH dω = η πωc
2
. (18)

The Hall sum is indeed reduced at 95 K compared to that of the superconducting state
[19], which we find encouraging. We expect the full sum rule (withη = 1 in the equation
above) to be recovered if the integral extends over a much larger energy range (J or t), for
which spin–charge separation is no longer relevant.

In summary, we have put forward a hypothesis for understanding transport in the
cuprates, based on the idea of spin–charge reconfinement. This model, represented by the
two main assumptions (11) and (15), explains naturally the suppression of the Hall response
compared to Drude theory. It also links the Hall transport timeτH in DC measurements
to the lifetime of a physical hole which can be independently deduced from photoemission
linewidths. In this picture, the dynamical time extracted from the AC Hall effect is however
the longitudinal scattering timeτtr. We stress that this model (11) is illustrative and ignores
the quantum degeneracy of the charge carriers. We hope that, while incomplete, it will
stimulate further experimental work and serve as the basis for further discussion.
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